Thermodynamic studies of dissociation reactions of some dicarboxylic acids in 20% (w/w) acetonitrile – water mixture Ghassan Younes

Beirut Arab University, Faculty of Science, Department of Chemistry, PO Box 11-5020, Riad El Solh, Beirut 1107 2809, Lebanon

 pK_1 and pK_2 values at zero ionic strength of some dicarboxylic acids (succinic, tartaric, malonic, malic and maleic) in 20% (w/w) acetonitrile–water at temperatures ranging from 30 °C to 60 °C have been determined using a precise EMF method. The thermodynamic parameters ΔH° , ΔG° and ΔS° of the first and the second dissociation reactions are calculated from well known equations and discussed in terms of solute-solvent interactions. An extrathermodynamic analysis of the obtained results has been performed and indicates that these dissociation reactions are entropy-controlled reactions where solute–solvent interaction plays an important role.

Keywords: dicarbxylic acids, dissociation constants, solvent effects, thermodynamic parameters

The systematic determination of solvent effects on acid dissociation constants and their thermodynamic functions is a subject of both practical and theoretical importance in chemical and biochemical analysis and leads to practical information concerning solute–solvent interactions. Therefore, the nature and the effect of solvents on ionic dissociation especially the dissociation of organic acids have been extensively documented.¹⁻⁷ Several techniques have been used to measure the acid-dissociation constants.⁸⁻¹² The EMF method with the glass electrode/HCl, H₂L, Na₂CO₃/AgCl, Ag cell (where H₂L represents the dicarboxylic acid) developed by Monk and Amira is the most precise method for the determination of K_1 and K_2 at zero ionic strength.^{13,14} Dissociation constants have been determined for some dicarboxylic acids in an aqueous medium and in mixed solvents.¹⁵⁻²¹

Acetonitrile (MeCN) is one of the most important dipolar aprotic solvents, it is used extensively as a reaction medium for mechanistic studies, in electrochemistry, and in HPLC and it is also employed as a solvent for non aqueous titrations.²² MeCN behaves as a weaker base and as a much weaker acid than water. It has a relatively high dielectric constant ($\varepsilon = 36$) and a small autoprotolysis constant ($pK_s = 33.6$). Accordingly, MeCN acts as a strongly differentiating solvent with a modest solvating power for many polar ionic solutes.²³

Barbosa et al.18 studied the effect of added acetonitrile in water up to 70% (w/w) on the pK_1 and pK_2 values of some dicarboxylic acids at constant temperature (25 °C), while the present work is concerned with the studies of a selected dicarboxylic acids (succinic, tartaric, malic, malonic, maleic acids) which are of special interest due to their reactivity spectrum toward ion solvation, where the first and the second dissociation constants K_1 and K_2 have been determined using the cell mentioned above in 20% (w/w) MeCN/water solvent and over a wide range of temperatures from 30 to 60 °C in order to study the thermodynamic behaviour of these acid dissociation reactions in an acetonitrile-water medium. The related thermodynamic parameters for these dissociation reactions are computed from well known thermodynamic relationships, in order to throw light on the effects of solventsolvent and solute-solvent interactions.

Experimental

Chemicals and reagents

Analytical reagent grade chemicals were used, unless otherwise indicated. The dicarboxylic acids studied (succinic, tartaric, malonic, maleic and malic) were purchased from Fluka and used as delivered. Pure co-solvent MeCN (HPLC grade), was supplied by Merck and mixtures of 20% (w/w) in water were prepared using double distilled water. Sodium carbonate (dried at 300 °C for 3 h) was supplied from Fluka. Stock solution of HCl ($\cong 0.035$ M) was analysed with primary

standard base, and stock buffer solutions of $\rm H_2L$ and $\rm Na_2CO_3$ were prepared.

Procedures and EMF measurements

 K_1 and K_2 determinations were based on the EMF measurements of the cell described above. The buffer compositions were taken as [H₂L]: [Na₂CO₃] \cong 3:1 for K_1 determination and 1.2: 1 for K_2 determination. In the first step, the cell was calibrated by introducing about 230 g of 20% MeCN into the cell with sufficient dilute HCl (\cong 0.035 M) containing 20% MeCN in order to determine the standard cell EMF E° value before making successive additions of stock buffer solutions. With the electrode in position, the cell was equilibrated at the desired temperature $(\pm 0.1 \, ^{\circ}\text{C})$. The HCl solution was then given a short stir until the EMF was constant. Up to six additions of stock buffer were then made by weighing pipette (after each addition the solution was stirred and the EMF of the cell was monitored to constancy). The time needed could vary from 1 h for the first addition for a K_2 series down to 15 min for other additions and for all K_1 series. The constancy of the EMF values was checked by the difference between the first and the last readings which was never more than ± 0.1 mV. Measurements to ± 0.1 mV were made with a digital Micro 2-pH/ion meter.

Results and discussion

The expressions used for calculating the first and the second dissociation constants, K_1 and K_2 , of the studied dicarboxylic acids under investigation in 20% (w/w) MeCN–water mixture at temperatures from 30 to 60 °C are:

$$K_1 = [H^+] [HL^-] \gamma_H \gamma_{HL} / [H_2 L]$$
 (1)

$$K_2 = [H^+] [L^{2-}] \gamma_{\rm I} / [HL^-]$$
 (2)

$$K_{\rm NaL^{-}} = [\rm Na^{+}] [\rm L^{2-}] \gamma_{\rm L} / [\rm NaL^{-}]$$
 (3)

$$-\log \gamma_{i} = AZ_{i}^{2} \left[I^{\frac{1}{2}} (1 + 1.3 I^{\frac{1}{2}}) - 0.3I \right]$$
(4)

$$E(\text{cell}) = E^{\circ}(\text{cell}) - k' \log ([\text{H}^+] [\text{CL}^-] \gamma_{\text{H}} \gamma_{\text{CL}}) \qquad (5)$$
$$(k' = 2.3026 \text{ RT/F})$$

Where *I* and γ represent the ionic strength and the activity coefficient respectively. Firstly E°(cell) was calculated from equations (4) and (5) by knowing *E*(cell) of the diluted HCl solution (*I* = [HCl]). If the the stoichiometric molal concentrations of HCl, H₂L and Na₂CO₃ are m₁, m₂ and m₃ respectively, the following equations are used (with equations (1) – (5)) for calculating *K*₁.

$$[H_2L] = m_1 + m_2 - 2 m_3 - [H^+] + [L^{2-}] + [NaL^-]$$
(6)

$$[HL^{-}] = m_2 - [H_2L] - [L^{2-}] - [NaL^{-}]$$
(7)

Approximate values of $[H^+]$ on the addition of buffer solution were calculated from equations (4) and (5) with $I = m_1$ followed by applying equations (6) and (7) with $[L^{2-}] = [NaL^-] = 0$ in the first cycle. The subsequent value of I was used to recalculate $[H^+]$ followed by calculation of $[L^{2-}]$ using equation (2) with the estimated values of K_2 , and $[NaL^-]$ was calculated using equation (3). If the estimates of K_2 were significantly different, the calculations were repeated until

14.417

17.58

20.835

22.968

 $T = 45 \,^{\circ}C$

 $-E^{\circ}/mV = 565.9$

10³ I

7.097

11.527

15.181

17.824

20.653

23.613

10⁵ K₁ 3.233 3.616 3.751 3.964 4.117 4.282

10⁵ K₁ 3.786 4.162 4.598 4.759 4.958 5.119

10⁵ K₁ 3.936 4.310

4.677

4.863

5.123

5.276

 $10^5 K_1$

4.232

4.774

5.126

5.294

5.526

5.778

	20%		T = 30 °C
	$10^3 m_1 = 2.999$	$-E_1/mV = 230.3$	$-E^{\circ}/mV = 537.3$
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I
11.851	2.963	141.5	6.111
18.470	4.617	133.7	9.526
25.381	6.345	129.4	13.128
31.097	7.774	127.9	16.106
37.096	9.274	126.5	19.236
42.081	10.52	125.8	21.83
	20%		T = 35 °C
	10 ³ m ₁ = 2.961	$-E_1/mV = 234.5$	<i>−E°/</i> mV = 547.3
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I
12.838	3.210	144.6	6.552
20.255	5.064	136.6	10.274
28.559	7.140	133.5	14.460
36.130	9.031	131.0	18.282
41.844	10.461	130.0	21.167
46.599	11.650	129.3	23.567
	20%		T = 40 °C
	10 ³ m ₁ = 3.335	$-E_1/mV = 239.7$	$-E^{\circ}/mV = 551.4$
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I
13.532	3.383	148.5	6.938
20.807	5.202	140.1	10.622

28.252

34.443

40.818

44.996

10³ m₂

13.925

22.740

29.989

35.230

40.837

46.706

7.063

8.611

10.204

11.249

20%

10³ m₁ = ?

10³ m₃

3.481

5.685

7.497

8.807

10.209

11.676

	20%		T = 50 °C	
	10 ³ m ₁ = ?	$-E_1/mV = 240.4$	$-E^{\circ}/mV = 574.4$	
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I	10 ⁵ K ₁
14.391	3.596	147.2	7.330	4.362
21.722	5.430	141.7	11.011	4.797
27.677	6.919	139.2	14.010	5.027
34.014	8.503	138.4	17.204	5.439
39.901	9.975	137.0	20.172	5.604
45.384	11.346	136.3	22.936	5.838

136.7

134.6

133.4

132.7

 $-E_1/mV = 238.5$

-E (mV)

146.6

140.1

137.8

136.4

135.5

134.8

	20%		T = 60 °C	
	$10^3 m_1 = ?$	$-E_1/mV = 250.4$	$-E^{\circ}/mV = 594.4$	
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I	10 ⁵ K ₁
14.878	3.720	152.7	7.573	4.228
23.625	5.906	146.9	11.972	4.794
30.049	7.512	144.8	15.211	5.036
36.022	9.005	143.4	18.223	5.264
41.589	10.397	142.6	21.032	5.508
47.417	11.854	142.8	23.969	5.944

446 JOURNAL OF CHEMICAL RESEARCH 2008

Table 2	Determination of K	p for succinic acid in 20%	(v/v) MeCN/water at	different temperatures
---------	--------------------	----------------------------	---------------------	------------------------

	20%		T = 30 °C	
	10 ³ m ₁ = 2.738	$-E_1/mV = 226.7$	<i>−E°/</i> mV = 538.1	
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I	10 ⁶ K ₂
6 466	5 172	50.9	12 221	1 660
10 474	9 270	20.7	20 726	1.000
10.474	11 007	24 7	20.720	1.004
13./30	12.449	34.7	27.002	1.0/9
10.010	13.440	32.2	34.291	1.11/
19.996	19.997	30.4	41.071	1.150
22.940	10.557	23.1	47.316	1.179
	20%		T = 35 °C	
	10 ³ m ₁ = 2.694	$-E_1/mV = 271.5$	$-E^{\circ}/mV = 589.2$	
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I	10 ⁷ K ₂
6.591	5.273	82.8	12.220	6.031
9.981	7.985	73.7	19.593	7.026
13.134	10.507	69.8	26.330	7.615
16.073	12.858	67.7	32.626	8.056
18.820	15,056	66.4	38,480	8.434
21.393	17.114	65.6	43.939	8.807
	20%		T = 40 °C	
	10 ³ m ₁ = 2.467	$-E_1/mV = 230.4$	<i>−E°/mV</i> = 557.9	
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ I	10 ⁶ K ₂
5 724	4 579	55.2	10.651	1 110
0.100	7.252	12 5	10.001	1.110
9.190	7.352	42.5	10.123	1.137
12.410	9.928	37.1	25.124	1.149
15.770	12.010	33.7	32.238	1.1/2
10.001	15.105	31.7	38.808	1.190
	17.417	30.4	77.000	1.220
	20%	E () () 005 0	T = 45 °C	
	$10^3 \text{ m}_1 = 3.565$	$-E_1/mV = 285.3$	$-E^{\circ}/mV = 598.7$	
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ l	10 ⁷ K ₂
6.281	5.025	96.2	10.958	4.875
9.347	7.478	80.9	17.532	6.075
12.614	10.091	74.9	24.653	6.995
15.286	12.229	71.6	30.338	7.416
18.146	14.517	69.3	36.469	7.812
21.141	16.913	67.9	42.864	8.299
	20%		T = 50 °C	
	$10^3 m_1 = 2.474$	<i>−E</i> ₁ /mV = ?	$-E^{\circ}/mV = ?$	
10 ³ m ₂	10 ³ m ₂	- <i>E</i> (mV)	10 ³ I	10 ⁷ K ₂
6 205	4 964	82.9	11 366	5 405
10.069	9.00 1 8.055	72.0	10 771	6 906
13 626	10 001	67 F	27 200	0.030
16.010	10.501	07.5 6E 9	27.330	7.300
10.913	15.551	00.0	34.437	7.991
19.032	15.706	63.6	40.232	8.351
	17.743	03.0	45.050	0.013
	20%		T = 60 °C	
	10 ³ m ₁ = 2.837	$-E_1/mV = 292.6$	$-E^{\circ}/mV = 633.7$	
10 ³ m ₂	10 ³ m ₃	<i>–E</i> (mV)	10 ³ l	10 ⁷ K ₂
6.578	5.262	87.5	12.072	5.348
9.744	7.795	76.9	18.912	6.197
13.412	10.730	71.4	26.828	6.744
16.794	13.435	68.8	34.087	7.187
19.315	15.452	65.5	39.452	6.926
21.974	17.579	67.1	45.138	7.977

the difference between successive values of [H⁺] agreed to $\leq 1 \times 10^{-9}$ m, and then K_1 was obtained from equations (1) and (4).

For K_2 , [H⁺] is calculated as described above and then by using equations (8) and (9).

$$[HL^{-}] = m_1 + 2 m_2 - 2 m_3 - [H^{+}] + 2[H_2L]$$
(8)

$$[L^{2-}] = m_2 - [H_2L] - [HL^-] - [NaL^-]$$
(9)

With $[H_2L] = [NaL^-] = 0$ in the first cycle followed by the use of equations (1) and (3) for calculating $[H_2L]$ and $[NaL^-]$ respectively, K_2 was calculated from equations (2) and (4) when the difference between successive values of $[H^+]$ agreed to $\leq 1 \times 10^{-9}$ m. All computations were made by GW-BASIC computer programs.

Tables 1 and 2 represent some examples of detailed runs of succinic acid in 20% (w/w) MeCN for different temperatures and for different ionic strengths. It is obvious that most of the K_1 and K_2 values for one run varied with the ionic strength. Accordingly extrapolated values of K_1 and K_2 values at zero ionic strength were obtained from the linear least square plots of K_1 and K_2 against ionic strength.

The computed pK_1 and pK_2 values at zero ionic strength of the studied dicarboxylic acids in 20% (w/w) acetonitrile for different temperatures are given in Tables 3 and 4.

It can be seen from Tables 3 and 4 that the pK_1 and pK_2 values of the studied acids are found to be greater in 20% acetonitrile than in water.^{20,21} These results are in agreement with Born's equation for predicting ionisation constants.²⁴ Comparison of the interpolated pK_1 and pK_2 values of tartaric acid at 25 °C in 20% (w/ w) acetonitrile–water mixture obtained by Barbosa *et al.*¹⁸ are 3.48 and 4.78 respectively were found to be quite near to that obtained in the present work at 30 °C, 3.47 and 4.52 respectively. The small difference in pK_2 arises from the effect of temperature as pK_2 is more sensitive to temperature variation than pK_1 .

Thermodynamics of acid dissociation

The standard thermodynamic parameters ΔG° , ΔH° and ΔS° of the first and second dissociations for all dicarboxylic acids in 20% MeCN were computed from well-known thermodynamic relationships. The plots of pK_1 or pK_2 against 1/T shown in Figs 1 and 2 give straight lines for both dissociations and for all dicarboxylic acids, which shows that ΔH°_1 and ΔH°_2 may be treated as sensibly constant over the temperature range used here. From the slopes of these plots, values of ΔH°_1 and ΔH°_2 have been calculated. These are listed in Tables 5 and 6 with the computed values of ΔG°_1 , ΔG°_2 , ΔS°_1 and ΔS°_2 for the first and second dissociations.

 ΔG°_1 and ΔG°_2 have positive values which indicate the preferential stabilisation of H₂L in the first dissociation reaction, and of the HL⁻ in the second dissociation reaction. Moreover, their high values give a good indication of the pronounced solvation of both anions HL⁻ and L² of the acids in a 20% (w/w) MeCN–water mixture.

A useful comparison can be made with the standard entropies of the present work from which the negative values ΔS°_1 were found to be increasing in the following order: maleic < tartaric < malonic < malic < succinic. These acids have the general formula R–COOH

Fig. 1 Van't Hoff plots for the first dissociation reactions of dicarboxylic acids.

Fig. 2 Van't Hoff plots for the second dissociation reactions of dicarboxylic acids.

where R represents -CH₂-COOH in malonic, -CH₂-CH₂-COOH in succinic, -CH₂-CH(OH)-COOH in malic, -CH(OH)-CH(OH)-COOH in tartaric and -CH=CH-COOH in maleic. The tendency is mainly attributed to the electrostatic action on the carboxylic groups, transmitted through the CH₂-group for malonic and succinic acids, to hydroxyl substituents for malic and tartaric acids and also to conjugation effects for maleic acid. Furthermore, the electrostatic action transmitted through solvent molecules (field effect) also governs these solute-solvent interactions and their thermodynamics results. The charged anions (HL⁻, L²-) of these acids impose order

Table 3 p K_1 values of some dicarboxylic acids in 20% (w/w) MeCN/water at different temperatures

Acid	pK1							
	30 °C	35 °C	40 °C	45 °C	50 °C	60 °C		
Succinic	4.61	4.56	4.55	4.53	4.52	4.47		
	4.55	4.53	4.52	4.47				
Malic	3.87	3.85	3.85	3.80	3.79	3.76		
Tartaric	3.47	3.43	3.41	3.38	3.35	3.30		
Malonic	3.28	3.26	3.24	3.23	3.19	3.17		
Maleic	2.02	2.03	1.96	1.94	1.92	1.87		

Table 4 pK₂ values of some dicarboxylic acids in 20% (w/w) MeCN/water at different temperatures

Acid	pK ₁						
	30 °C	35 °C	40 °C	45 °C	50 °C	60 °C	
Succinic	5.73	5.89	5.99	6.15	6.44	6.42	
Malic	5.75	5.77	5.82	5.79	5.95	5.97	
Tartaric	4.52	4.58	4.68	4.76	4.88	4.96	
Malonic	6.44	6.71	6.69	6.79	6.69	7.18	
Maleic	7.03	7.24	7.29	7.41	7.59	7.58	

Table 5 Thermodynamic parameters for the first dissociation constant in 20% (w/w) MeCN/water at different temperatures (ΔH° , $\Delta G^{\circ}/kJ \text{ mol}^{-1}$ and $\Delta S^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1}$)

T/°C		Succinic	Tartaric	Malonic	Malic	Maleic
30	ΔH°_{1}	8.27	10.56	7.35	6.96	10.41
	ΔG°_{1}	26.77	20.15	19.07	22.48	11.75
	$-\Delta S^{\circ}_{1}$	61.04	31.62	38.67	51.17	4.40
35	ΔH°_{1}	8.27	10.56	7.35	6.96	10.41
	ΔG°_{1}	26.90	20.25	19.26	22.66	11.98
	$-\Delta S^{\circ}_{1}$	60.47	31.42	38.66	50.79	5.07
40	ΔH°_{1}	8.27	10.56	7.35	6.96	10.41
	ΔG°_{1}	27.31	20.46	19.46	23.11	11.76
	$-\Delta S^{\circ}_{1}$	60.80	31.60	38.68	51.56	4.31
45	ΔH°_{1}	8.27	10.56	7.35	6.96	10.41
	ΔG°_{1}	27.59	20.61	19.69	23.16	11.85
	$-\Delta S^{\circ}_{1}$	60.72	31.56	38.78	50.89	4.51
50	ΔH°_{1}	8.27	10.56	7.35	6.96	10.41
	ΔG°_{1}	27.98	20.76	19.78	23.48	11.90
	$-\Delta S^{\circ}_{1}$	60.99	31.55	38.48	51.10	4.61
60	ΔH°_{1}	8.27	10.56	7.35	6.96	10.41
	ΔG°_{1}	28.51	21.07	20.25	23.99	11.95
	$-\Delta S^{\circ}_{1}$	60.76	31.54	38.73	51.11	4.62

Table 6 Thermodynamic parameters for the second dissociation constant in 20% (w/w) MeCN/water at different temperatures $(\Delta H^{\circ}, \Delta G^{\circ}, /kJ \text{ mol}^{-1} \text{ and } \Delta S^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1})$

T/°C		Succinic	Tartaric	Malonic	Malic	Maleic
30	$-\Delta H^{\circ}{}_{2}$	48.71	30.36	38.02	15.26	36.37
	ΔG°_2}	33.27	26.23	37.39	33.42	40.81
	$-\Delta S^{\circ}_{2}$	270.45	186.70	248.77	160.58	254.64
35	$-\Delta H^{\circ}{}_{2}$	48.71	30.36	38.02	15.26	36.37
	ΔG°_2}	34.79	27.06	38.58	34.05	42.72
	$-\Delta S^{\circ}_{2}$	271.00	186.37	251.85	160.03	256.71
40	$-\Delta H^{\circ}{}_{2}$	48.71	30.36	38.02	15.26	36.37
	ΔG°_2}	35.93	28.09	40.10	34.89	43.74
	$-\Delta S^{\circ}_{2}^{2}$	270.31	186.66	249.50	160.15	255.86
45	$-\Delta H^{\circ}{}_{2}$	48.71	30.36	38.02	15.26	36.37
	ΔG°_2}	37.50	29.03	41.35	35.29	45.15
	$-\Delta S^{\circ}_{2}$	271.33	186.71	249.51	158.90	256.27
50	$-\Delta H^{\circ}{}_{2}$	48.71	30.36	38.02	15.26	36.37
	ΛG°_2}	39.84	30.21	41.42	36.83	46.96
	$-\Delta S^{\circ}_{2}^{2}$	274.04	187.48	245.86	161.20	257.89
60	$-\Delta H^{\circ}{}_{2}$	48.71	30.36	38.02	15.26	36.37
	ΔG°_2}	40.95	31.66	45.81	38.10	48.36
	$-\Delta \hat{\boldsymbol{S}}^{\circ}_{2}^{2}$	269.13	186.20	251.65	160.17	254.36

on the surrounding solvent molecules, which interferes with internal rotation of the alkyl chain of the acid, and thus the partial molal entropies of the anions become smaller (relative to the neutral acid) and hence ΔS°_1 of the dissociation should be more negative as the length of the alkyl chain increases. ΔS°_2 values are more negative than ΔS°_1 values, since solvent interactions in anion L^2 are properly higher than that of mono-anion HL².

From the above discussions, the order imposed on the solvent about mono-succinate anion should restrict internal rotation in an $-CH_2$ - CH_2 -COOH group more than in the $-CH_2$ -COOH group in the case of mono-malonate anion. This restriction of internal rotation lowers the partial molal entropy of the succinate mono-anion compared with the corresponding malonate mono-anion, and thus the ΔS°_1 value of succinate mono-anion becomes more negative.

The higher negative ΔS°_1} value of succinic acid compared with malic and tartaric acids could be explained in the light of hydrogen bonding, which mainly exists in malic and tartaric acids. This effect causes a lowering in the basicity of both malate and tartarate mono anions with subsequent decreases of solvation and correspondingly less negative ΔS°_1} values compared with succinic acid. Accordingly, the basicity of the succinate mono anion becomes higher, and thus,

the extent of its solvation is increased giving more lowering of its partial molal entropy compared to that of malate and tartarate mono anions; thus the negative ΔS_1° of the succinate mono anion should be higher than that of the malate and tartarate mono anions. However, the higher conjugation effect in the maleate mono anion give less basicity for the anion species with a subsequent decreasing of solvation (compared with the rest of the studied series) and correspondingly a relatively less negative ΔS°_{1} is obtained. Moreover, the first dissociation process is more favoured for the formation of monomaleate anion. This allows maleic acid to be the strongest of the studied acids (lowest p K_1 values). The trend in ΔS_2° values among the studied acids is similar to that obtained for ΔS°_{1} except for maleic acid where the conjugation stabilised the negative charge on the two carboxylate oxygen atoms yielding more solvent electrostriction than in the case of ΔS°_{1} due to the repulsion between the two carboxylate anions.

The negative values of ΔH°_2 for the second ionisation reaction reflect exothermic dissociation while the positive values of ΔH°_1 for the first dissociation reaction reflect endothermic dissociation.

Extrathermodynamic Analysis

An extrathermodynamic analysis of the obtained results has been performed to test the isoequilibrium correlation among different dicarboxylic acids. This correlation is shown in Figure 3 which represents $\Delta H^{\circ} - \Delta S^{\circ}$ for the first and second dissociation reactions for the studied dicarboxylic acids at 40 °C. This correlation was found to be linear with a slope (β) of 55.3 K for the first dissociation and 236.2 K for the second dissociation. These isoequilibrium temperatures of both dissociation reactions are found to be lower than the experimental temperature (313 K) indicating that these dissociation reactions are entropy controlled reactions²⁵ where solute–solvent interaction plays an important role.

Conclusion

In this work, pK_1 and pK_2 values at zero ionic strength of succinic, tartaric, malonic, malic and maleic acids have determined using a precise EMF method and have been found to be in agreement with Born's equation. The thermodynamic parameters of the first and the second dissociation reactions have been calculated. The positive values of ΔG°_1 and ΔG°_2 indicate the preferential stabilisation of H₂L and HL⁻. Moreover, their higher values give a good indication of the pronounced solvation of both anions HL⁻ and L²⁻ of the acids.

Fig. 3 Isoequilibrium plots for the acid dissociation reactions at 40 $^\circ\text{C}.$

The negative values of ΔH°_2 reflect exothermic dissociation, while the positive values of ΔH°_1 reflect endothermic dissociation. The negative values of ΔS°_1 were found to increase in the following order: maleic < tartaric < malonic < malic < succinic acids. A similar trend was found for ΔS°_2 values except for maleic acid where conjugation stabilised the negative charge on the two carboxylate oxygen atoms yielding more solvent electrostriction than in the case of ΔS°_1 due to the repulsion between the two carboxylate anions. The isoequilibrium temperatures of both dissociation reactions were found to be lower than the experimental temperature (313 K) indicating that these dissociation reactions are entropy controlled reactions where solutesolvent interaction plays an important role.

 Base of the second state
 Constraint of the second state
 Constrate
 Constraint of the second state</th

References

- F. Mardn, D. Celadon, M.G. Serverin and E. Vianello, J. Am. Chem. Soc., 1991, 113, 9320.
- 2 A.A. El-Bardan, N.M. El-Mallah and E.A. Hamed, J. Phys. Org. Chem., 1992, 5, 239.
- 3 A.H. Azab, A. Hassan and Z.A. Khafagy, J. Chem. Eng. Data, 1993, 38, 231.
- 4 A. Cladera, C, Tomas, J.M. Estela and V. Cedra, *Anal. Chim. Acta.*, 1994, **286**, 253.
- 5 G.E. Jackson and L.F. Seymour, *Talanta*, 1995, 42, 5.
- 6 A.A. Boraei, I.T. Ahmed and M.M. Hamed, J. Chem. Eng. Data,1996, 41, 787.
- 7 F.R. Trull, S. Bioadjiev and A.F. Mc Donagh, *J. Lipid Res.*, 1997, 38, 1178.
- 8 A.G. Gonzalez, D. Rosales, J.L. Gomez Ariza and J.F. Sanz, Anal. Chim. Acta, 1990, 228, 301.
- 9 L. Chmurzynski, A. Wawrzynow and Z. Pawlak, *Electrochim. Acta*, 1990, 35, 665.
- 10 L. Chmurzynski, A. Liwo and P. Barczynski, <u>Anal. Chim. Acta</u>, 1996, 335, 147.
- 11 A.G. Gonzalez, M.A. Herrador and A.G. Asuero, *Anal. Chim. Acta*, 1991, **246**, 429.
- 12 Z. Guo, H. Miyoshi, K. Nagatani, T. Komyoji, T. Haga and T. Fujita, J. Org. Chem., 1991, 56, 3692.
- 13 C.B. Monk and M.F. Amira, J. Chem. Soc. Faraday Trans. 1, 1978, 74, 1170.
- 14 C.B. Monk and M.F. Amira, J. Chem. Soc. Faraday Trans.1, 1980, 76, 1773.
- 15 M.F. Amira, Sh. El-Shazly and M.M. Khalil, *Thermochem. Acta.*, 1987, 115, 1.
- 16 G. Younes, G. El-Subruiti, K. Hamdan and M. Amira. Proc. Int. Conf. on RTST, Lebanese American University, Beirut, Lebanon, 4-6 March 2002, 115.
- 17 A.A. Zaghloul, G.A. El Naggar, Sh. A. El Shazly and M.F. Amira, <u>*Talanta*</u>, 1997, 45, 189.
- 18 J. Barbosa, J.L. Beltran and V. Sanz-Nebot, Anal. Chim. Acta, 1994, 288, 271.
- 19 A.A. Zaghloul, Afinidad, 1996, 462, 123.
- 20 A.A. Zaghloul, G.A. El Naggar and M.F. Amira, *Gazz. Ital.*, 1996, 126, 735.
- 21 G.A. El Naggar, S.M. Selim, A.A. Zaghloul and M.F. Amira, Z. Phys. Chem., 2002, 216, 1239.
- 22 J. Barbosa and V. Sanz-Nebot, Talanta, 1989, 36, 837.
- 23 G. Jahanbakhsh, A. Shahin, K. Mikael and F. Amin, J. Chem. Eng. Data, 2003, 48, 1178.
- 24 M. Born, Z. Phys. Chem., 1920, 45, 1.
- 25 J. E. Leffler and E. Grunwald, *Rates and equilibria of organic reactions*, John Wiley and Sons, New York, 1963. p.155.